If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8z^2+6z-7=0
a = 8; b = 6; c = -7;
Δ = b2-4ac
Δ = 62-4·8·(-7)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{65}}{2*8}=\frac{-6-2\sqrt{65}}{16} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{65}}{2*8}=\frac{-6+2\sqrt{65}}{16} $
| 4x+10-2x=32 | | 20x+9=15x+38 | | 20x+9=15x+39 | | G(x)=10x+4x | | x=45/60 | | X+4x+3=8 | | 8+5(h)=38 | | 6x-11=90 | | 3x+4+2x=x+20 | | X+2x+7=2x+12 | | 8x+12=15x=3x+25=7x | | 4(10-x)=40-4(x) | | x+11=3+2x+3x | | 2(-1x)(2-(-1x))=0 | | 2x+12=x+3x | | 3x+15=2x^2+4x+2 | | 2(-5+-1x)(2=-1x)=0 | | 3(x)=5+3(x) | | -2(n+7/3)=-14/3 | | 77.2=m+38.7 | | 3^(x-4)=729 | | 6x=9=63 | | 60=16+y | | 4w+2=22W= | | 3(x)+11=74 | | (×+2)(x+8)=0 | | 3x-4x=319 | | 2(4t-7)=23t+8 | | 2(x+4/3)2−5=123 | | (X^2)(x+8)=0 | | F(x)=9+2x | | 97+131+57+(15+4x)=360 |